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Abstract

Based on the new theoretical approach and the self-consistent iteration procedure for calculating the limiting values

(e(N) and e(0)) of the frequency-dependent permittivity, it becomes possible to recognize the fitting function for the

function e(jo) measured for a complex system representing plant tissues of fresh fruits and vegetables in the frequency

range (107–1.8� 109Hz). The recognized fitting function is common for all of a set of nine fruits and vegetables (apple,

avocado, banana, cantaloupe, carrot, cucumber, grape, orange, and potato) and contains seven fitting parameters. These

parameters are varied for different fruits and vegetables, and their behavior with respect to temperature is different but

nevertheless exhibits some common features. This fitting function containing power-law exponents and confirming the

existence of relaxation processes described in terms of fractional kinetic equations for some complex biological systems can

be used for practical purposes to construct a desired calibration curve with respect to quality factors, as for example,

moisture content or degree of maturity. The discovered common ‘‘universality’’ in dielectric behavior of such complex

materials as plant tissues opens a possibility to use dielectric spectroscopy as a nondestructive method of control in analysis

of electrical behavior (measured in the form of complex permittivity or impedance) for other complex materials.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Theory of dielectric relaxation in plant tissues; Averaged collective motion in mesoscale region; General decoupling procedure
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1. Introduction

Dielectric spectroscopy (DS), as a non-resonant
method for investigating electrical properties of
different substances, is widely used for practical
applications including measurements on biological
e front matter r 2006 Elsevier B.V. All rights reserved
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tissues and various materials of non-crystalline
nature. But before one can increase the limits of
applicability of this rather simple and effective
method for investigating the structure of different
materials, it is necessary to understand how the
measured fitting parameters are related to the
structure of the material considered. In fact, it is
necessary to find a proper answer for a simple
question: what kind of information related to the

structure of a material and its dynamic properties can
.
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be ‘extracted’ with the help of the measured complex

susceptibility or impedance?

Unfortunately, the possibilities of the existing
theory of relaxation cannot serve the needs of
broadband DS using modern and efficient experi-
mental techniques. Empirical relationships like the
Havriliak–Negami (HN) expressions (see details in
the next section) are widely used for the fitting of the
complex permittivity expression. However, when
the fitting parameters are not related to the structure
of the material, this is the main obstacle for
increasing of the limits of applicability of DS. The
main purpose of this paper is to find the proper
answer for the question formulated above. Besides,
we want to demonstrate these new possibilities in
analysis of such complex materials as plant tissues
of different fresh fruits and vegetables. The reduc-
tion of a different set of micromotions to the
averaged collective motion in the mesoscale region
helps in understanding true possibilities of DS
among other ‘spectroscopies’. We can define DS as
the spectroscopy of different collective motions. In
other words, the process of treating dielectric
relaxation in self-similar structures in the mesoscale
region is simplified. We have only a few collective
motions appearing in the results of the averaging
procedure, described in detail in the next section,
that interact with each other. This important
mathematical result helps to increase the possibi-
lities of DS and applies to a wide class of non-
crystalline materials of different complexity, includ-
ing, for example, different biological cells and
tissues. In this paper, we chose plant tissues of
different fruits and vegetables to demonstrate the
fact that the identified complex permittivity func-
tion looks rather simple and reflects the contribu-
tion of different collective motions interacting with
each other in the intermediate range of scales.

Having in mind the practical side of DS, we can
note that the dielectric properties of different
complex materials can be used to sense non-
electrical characteristics of those materials when
the permittivities, or dielectric properties, of those
materials are correlated with the non-electrical
material characteristics. An excellent example is
found in the agricultural industry [1], where, for
example, the moisture content of cereal grains and
other seed crops must be determined rapidly at
harvest and times of sale. The moisture content, or
proportion of water in these materials, is critical for
safe storage, because the materials will be infected
with fungi and spoil if the moisture content is too
great. Standard methods of moisture content
determination require oven drying for time periods
ranging from 1 to 36 h at specified temperatures, so
electronic moisture meters that sense moisture
immediately through the correlation between per-
mittivity and moisture content have been developed
and used in commerce for many years [1,2].

Complex relative permittivities of fresh fruits and
vegetables have been measured at microwave
frequencies to determine whether these properties
might be useful in determining maturity of peaches,
Prunus persica (L.) Batsch or chilling injury in sweet
potatoes, Ipomoea batatas (L.) Lam. [3,4]. Results
indicated that such measurements at a single
frequency cannot be expected to be useful in
distinguishing stage of maturity or injury. With
the availability of test equipment and techniques for
wide frequency-range permittivity measurements,
additional permittivity measurements on fresh fruits
and vegetables were obtained between 0.2 and
20GHz [5], and efforts were also made to distin-
guish differences in maturity of peaches [6].
Differences in the real part of the permittivity due
to maturity stage were noted at the lower end of the
frequency range, and lesser differences in the
imaginary part were noted at the higher frequencies.
Differences in the real part of the permittivity
appeared to be diverging at the lower frequencies, so
interest was indicated in such measurements at
lower frequencies.

Therefore DS data were obtained over the
frequency range from 10MHz to 1.8GHz for several
fresh fruits and vegetables, providing permittivities as
a function of both frequency and temperature [7].
These data have provided an opportunity for further
study by advanced dielectric relaxation analysis, which
is also the main subject of this paper.

2. Reduction of a set of micromotions to the averaged

collective motion on mesoscale

In DS, there is one contradictory point that
should be understood in detail. On one hand,
dielectric/impedance spectroscopy is applicable for
a wide class of substances having different geo-
metric configurations, different physical structures
and types of systems (crystals, polymers, films,
biological tissues, etc.), and a variety of polarizing
species (dipoles, hopping electrons, polarons, ions)
with respect to the applied electric field. On the
other hand, in spite of such a variety of substances,
the measured complex permittivity is described
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by a few fitting functions (in most cases having
empirical origin) containing presumably a set of
power-law exponents. The most popular function
used for the fitting of complex permittivity is the
HN equation [8]

e�HNðjoÞ ¼ e0ðoÞ � je00ðoÞ ¼ e1 þ
es � e1
ð1þ ðjoÞnÞb

. (1)

Here, e�HNðjoÞ is the HN complex permittivity
with real and imaginary components e0(o) and
e00(o), respectively. Here es ¼ e0(0) is the static
complex permittivity, eN is a value of permittivity
at higher (phonon) frequencies (1012–1013Hz), n and
b are some empirical power-law exponents not
having clear physical meaning. Traditionally, the
measured permittivity-frequency data are inter-
preted and analyzed quantitatively using expression
(1) or its linear combinations. However, in this
description the fitting parameters n and b remain
empirical, and the desired relationship with struc-
tural or microscopic motion parameters of the
material considered is not known. Other approaches
describing non-Debye relaxation in complex mate-
rials are given in a recent review [9].

The fact that different dielectric spectra are
described by the functions containing a combina-
tion of the power-law exponents is confirmed in
dielectric measurements realized by Jonscher with
co-authors [10] for a wide class of various sub-
stances. He formulated the so-called ‘‘universal’’
response (UR) phenomenon when the branches of
dielectric spectra (expressed in the form of complex
susceptibility) are described by expressions

wðjoÞ ¼ CnðjoÞ
�1þn,

wðjoÞ ¼ Am � BmðjoÞ
m; 0om; no1. ð2Þ

Finally, expressions (2) serve as the definition

of the UR behavior. Here m and n are some
real power-law exponents usually located in the
interval [0,1]. The validity of expressions (2) are
realized always in some finite frequency range
ominooooMx.

So, the natural question is realized: how to under-
stand the UR phenomenon expressed in the form (2)
observed in a wide class of dielectric materials? In
other words, what do we really measure in different
materials by means of complex permittivity data?

In this section, we want to show how a set of
different micromotions in the mesoscale region
is averaged and transformed to some collective
motion that is expressed analytically in the form of
the UR response behavior. This rigorous mathema-
tical result gives a natural explanation for the UR
phenomenon and explains the fact that DS is the
spectroscopy of collective motions.

Our starting point is based on the Mori–Zwanzig
theory [11] that is widely used for description of
kinetic properties of many complex systems [12–15].
In DS, this approach was applied recently to the
description of the properties of water molecules [16].
The chain of equations for an arbitrary time
correlation function (in our case proportional to
the total polarization P(t)) can be written as [16,17]

dPðtÞ

dt
¼ �

Z t

t0

k1ðt� uÞPðuÞdu;

dk1ðtÞ

dt
¼ �

Z t

t0

k2ðt� uÞk1ðuÞdu; ð3Þ

where k1(t), k2(t) are the memory functions of the
corresponding orders including the equilibrium
frequency moments. The basic problem in using
the Mori–Zwanzig formalism is to make a reason-
able decoupling assumption for the memory func-
tion in order to truncate the infinite chain of
integro-differential equations.

Having in mind the confirmation of the phenom-
enological approach developed earlier [18–20]
from basic statistical principles, we present the first
equation in the form

PðtÞ � Pðt0Þ þ

Z t

t0

Mðt� uÞPðuÞdu ¼ 0,

MðtÞ ¼

Z t

t0

ðt� uÞk1ðuÞdu: ð4Þ

The reason for such presentation is that the
Mori–Zwanzig equations cannot describe broadened

dielectric spectra. Previous attempts to describe the
broadened spectra from the Mori–Zwanzig equations
presented in form (3) for different memory functions
were unsuccessful [21]. Probably, it is related to the
fact that in nature there is a wide class of processes
that are changed more slowly in comparison with the
velocity of a relaxation process, which is usually
associated with the first derivative. Such relaxation
process is described by a kinetic equation with
derivative less than the first order

Dn
0t

nPðtÞ þ PðtÞ ¼ 0. (5)

Here Dn
0 determines the Riemann–Liouville frac-

tional operator [22]. Eq. (5) leads in the frequency
domain to the well-known Cole–Cole expression for
the complex susceptibility [22,23]. Such type of kinetic
equations cannot be derived directly from the
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conventional Mori–Zwanzig formalism [12–15], and
new investigations in receiving the ‘pure’ integral
equations for description of slow relaxation processes
are necessary.

In this paper, we suggest a rather general
decoupling procedure related to the approximate
calculation of the memory function M(t). For
further purposes it is convenient to consider the
memory function M(t) as a function of the Laplace
parameter s. Putting t0 ¼ 0 and applying the
Laplace transform to Eq. (4) we obtain

PðsÞ þMðsÞPðsÞ ¼
Pð0Þ

s
. (6)

To find an analytical expression for the Laplace-
image of the memory function M(s) describing a
relaxation/exchange process with thermostat, we
suppose that:
A1.
 We consider a heterogeneous material having a
self-similar structure. This structure can be
presented by a set of electrically active clusters.
Each cluster includes a group of strongly
correlated dipoles. However, different clusters
are weakly correlated with each other.
A2.
 The relaxation/exchange process with a ther-
mostat in some volume Vn is described by a
microscopic function f(stn). Here tn is a
characteristic relaxation time describing the
relaxation/exchange process with the thermo-
stat for a group of strongly correlated dipoles
located in a cluster having the volume Vn. If the
nth cluster contains Nn number of dipoles then
the relaxation/exchange process with the ther-
mostat of a set of weakly correlated clusters is
described by the function:

MðsÞ ¼
X

n

Nnf ðstnÞ. (7)

This expression increases the limits (when
Nn 6¼1) of applicability of the additivity hypoth-
esis widely used in statistical mechanics for a
set of weakly correlated physical values.
A3.
 Without loss of generality, we may suppose
that the Laplace-image of the function f(z)
depending on the complex variable z and
describing the microscopic act of interaction
of an electric dipole with the thermostat has the
following form:

f ðzÞ ¼
a0 þ a1zþ � � � þ aK zK

b0 þ b1zþ � � � þ bPzP
(8)
with KpP+1, and the polynomial in the
denominator has an only negative and com-
plex-conjugate root.
Case (a): Re(z)51 ðc0 ¼ a0=b0; c1 ¼ a1=b0 �

b1=b2
0Þ

f ðzÞ ¼ c0 � c1zþ c2z2 þ � � � . (9a)

Case (b) Re(z)b1 ðA1 ¼ aK=bP; A2 ¼

aK bP�1=b2
PÞ

f ðzÞ ¼
A1

zP�K
þ

A2

zP�Kþ1
þ � � � . (9b)

For K ¼ Pþ 1 we define f(z) as a relaxation

function describing the process of interaction
of a dipole with a thermostat. If KoPþ 1 and
the denominator of polynomial (9) has divisible
roots, then we define f(z) as an exchange

function describing the interaction process
of a dipole with thermostat. The reason for
such division is that the minimal value of the
function f ðtÞ ¼

LT
f ðsÞ in the first case is f(0)6¼0,

and moreover f(t) goes to zero as t-N

monotonically. In the exchange case, however,
the value f(0) ¼ 0 and the microscopic function
f ðtÞ has at least one maximum and so may tend
to zero monotonically or nonmonotonically
as t-N.
A4.
 We assume that the distributions of the values
Nn and the set of relaxation times tn obey the
following scaling conditions:

Nn ¼ N0b
n,

tn ¼ t0x
n
ð�NonoN ; N1; b; x40Þ.

ð10Þ

At n ¼ 0 we define the number of dipoles
N0 and the characteristic relaxation time
t0, respectively, for the cluster having a
minimum number of correlated dipoles. With-
out loss of generality, one can assume that
the volume of the minimum cluster coincides
with one dipole. So, N0 ¼ 1 and t0 defines
the characteristic time of the relaxation/
exchange process with thermostat of a single
dipole.
The above suppositions mean that the expression
for the Laplace-image of the memory function M(t)

assumes the form

MðzÞ � SðzÞ ¼
XN�1

n¼�ðN�1Þ

bnf ðzxn
Þ; ðN1Þ. (11)
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Here z � st0. Moreover, the function SðzÞ at any
fixed N satisfies the functional equation

SðzxÞ ¼
1

b
SðzÞ þ bN�1f ðzxN

Þ � b�Nf ðzx�Nþ1
Þ. (12)

We consider the asymptotic solution of this
scaling equation at Nb1 for b and xo1.

Taking into account the asymptotic behavior of
the function f(z) at small (9a) and large (9b) values
of Re(z), the contribution of the last two terms in
(12) becomes negligible for the interval:

zmin zj jzmax. (13)

Here

zmin ¼
A1

bN

� �1=ðP�KÞ

xN�1; zmax ¼
b

ðbxÞN
. (14)

For interval (13) at Nb1, the scaling Eq. (13) is
simplified and takes the form

SðzxÞ ¼
1

b
SðzÞ. (15)

The general solution of this scaling equation can
be written as [23]

SðzÞ ¼ pnðln zÞz�n; n ¼
ln ð1=bÞ

ln ð1=xÞ
. (16)

Here pn(ln z7ln x) ¼ pn(ln z) is a complex log-
period function with real period ln(x). The geome-
Table 1

Various solutions of the asymptotic scaling Eq. (16) for particular valu

Case Values of b Values of x omin omax

1. bo1 xo1
xN�1 A1

bN

� �1=ðP�KÞ b

ðbxÞN

2. b41 xo1
xN�1 A1

bN

� �1=ðP�KÞ b

ðbxÞN

3. bo1 x41 ðA1bN�1
Þ
1=ðP�KÞ

xN

ðbxÞN

c1x

4. b41 x41 A1bN�1
� �1=ðP�KÞ

xN

ðbxÞN

c1x

5. b ¼ 1 xo1 ðA1Þ
1=ðP�KÞxN�1

c1x�N
trical/physical meaning of this function and meth-
ods for its calculation have been considered
previously [24]. If we approximately replace S(z)
in (12) by integration, then one can evaluate the
zeroth Fourier component of the function pn(ln z).
We define this component using condition

hpnðln zÞiz�n �

Z N�1

u¼�Nþ1

buf ðzxu
Þdu. (17)

Taking into account the asymptotic decomposi-
tions (9) and condition b, xo1 one can obtain the
following expression from (17)

hpnðln zÞi � C0ðnÞ ¼
1

lnð1=xÞ

Z 1
0

xn�1f ðxÞdx. (18)

By analogy with these calculations, one can
consider other conditions imposed on parameters
b and x. All these cases have been considered and
presented in Table 1.

Analyzing these cases, one can say that relaxa-
tion/exchange processes with thermostat taking
place in a system of self-similar clusters are reduced
to the memory function

MðzÞ ¼ C0z�n þ C1z
�nþjhOi þ C�1z�n�jhOix. (19)

Here the real power-law exponent n accepts
positive or negative values and so its values
are not limited to the interval ð0pjnjp1Þ. The
es of the scaling parameters b and x

Functional equation Solution

SðzxÞ ¼
1

b
SðzÞ

SðzÞ ¼ pnðln zÞz�n

n ¼
ln ð1=bÞ

ln ð1=xÞ

SðzxÞ ¼ 1
b

SðzÞ þ r0

r0 ¼ c0bN�1 is finite value
SðzÞ ¼ pnðln zÞzn þ

br0

b� 1

n ¼
lnðbÞ

lnð1=xÞ

SðzxÞ ¼
1

b
SðzÞ þ r0

r0 ¼ c0bN�1 is finite value

SðzÞ ¼ pnðln zÞzn �
br0

1� b

n ¼
lnð1=bÞ

lnðxÞ

SðzxÞ ¼
1

b
SðzÞ

SðzÞ ¼ pnðln zÞz�n

n ¼
lnð1=bÞ

lnð1=xÞ

SðzxÞ ¼ SðzÞ þ c0 SðzÞ ¼ p0ðln zÞ þ c0
lnðzÞ

lnðxÞ
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mode /OS figuring in (19) is appearing because of
the approximate replacement of the exact log-
periodic function pn[ln (z)] in (16) by one mode, i.e.

pnðln zÞ ffi C0ðnÞ þ C1 expðjhOiÞ þ C�1 expð�jhOiÞ.

(20)

For the random fractals two terms figuring in (20)
are becoming negligible and the memory function in
(19) is reduced to the well-known constant phase-
angle element (CPE) [10]

MðjoÞ � ZnðjoÞ ¼ C0ðnÞðjoÞ
�n. (21)

Here the parameter C0(n) is defined by expression
(18). The Laplace complex parameter s is identified
with the complex frequency as s�jo.

Suppose now that the initial memory function
M(t) in (4) is modified by an exponential damping
function and is written as

MðtÞ ¼

Z t

0

ðt� uÞk1ðuÞ e
�lu du. (22)

In this case the Laplace variable is shifted by the
value z+lt0. If we suppose that only one collective
mode exists, then the reduction procedure described
above leads to the following generalized expression
for the memory function in the frequency domain:

MðjoÞ ¼ C0ðlt0 þ jot0Þ
�n
þ C1ðlt0 þ jot0Þ

�nþjhOi

þ C�1ðlt0 þ jot0Þ
�n�jhOi. ð23Þ

It is natural to define this function as the
generalized (when /OS6¼0) impedance function
describing the behavior of the so-called reind

(resistance+inductance, n40) and recap (resistan-
ce+capacitance, no0) two-pole element, respec-
tively. Below we shall use the abbreviation, the
generalized recap/reind element (GRE) for the
memory function satisfying relationship (23).

So, finishing this section one can conclude that
the reduction of a set of different micromotions to
the averaged collective motion naturally explains
and generalizes the UR phenomenon. In fact, this
procedure helps in understanding the unique place
of DS; this spectroscopy can be identified as the
spectroscopy of different collective motions inter-
acting with each other in the mesoscale region. It
explains also, from the microscopic positions, the
data-curve fitting approach developed previously as
a phenomenological tool for the fitting of raw
complex permittivity data in the frequency domain
[18–20]. According to this approach the complex
permittivity in the absence of the constant con-
ductivity can be written in the form [18,20]

eðjoÞ ¼ e1 þ
es � e1

1þ RðjoÞ
,

RðjoÞ ¼ ðjot1Þ
�n1 þ ðjot2Þ

�n2
� ��1

. ð24Þ

The last expression R(jo) is correct for the case of
two collective motions. These motions expressed
in the form of recap two-pole elements can be
connected with each other in parallel (n1;240) or in
series (n1;2o0). Taking into account the general
expression for the memory function (23), which is
correct for a wide class of self-similar structures, this
expression can be easily generalized for a set of
collective motions exceeding two and for the case of
quasi-regular fractals when /OS 6¼0.

3. Materials and experimental methods

Detailed information about the sample materials
and methods used for the permittivity measure-
ments is available elsewhere [7], but pertinent
information of interest will be included here.

3.1. Fruits and vegetables

A few samples of fresh fruits and vegetables
were selected to study the variation of permittivity
with temperature and frequency in the range
from 10MHz to 1.8GHz. They included the
‘Red Delicious’ apple, Malus domestica Borkh.;
Navel orange, Citrus aurantium subsp. bergamia;
‘Thompson Seedless’ grape, Vitis amurensis Rupr.;
‘Cavendish’ banana, Musa x paradisiacal L. var.
paradisiacal; ‘Russett Burbank’ potato, Solanum

tuberosum L.; cucumber, Cucumis sativus L.; carrot,
Daucus carota subsp. sativus (Hoffm.) Arcang.;
cantaloupe, Cucumis melo L.; and avocado, Persea

Americana, Miller var. americana.

3.2. Permittivity measurements

The electrical measurements necessary for per-
mittivity determination were obtained with a
Hewlett-Packard1 85070B open-ended coaxial-line
probe, a Hewlett-Packard 4291A Impedance/Mate-
rial Analyzer, and a temperature-controlled stain-
less steel sample cup and water jacket assembly
(Fig. 1), designed and built for use with the 85070B
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probe [8]. Permittivities were calculated with Agilent
Technologies 85070D Dielectric Probe Kit Soft-
ware, modified for use with the HP 4291A Analyzer
by Innovative Measurement Solutions, which pro-
vided permittivity values from the reflection coeffi-
cient of the material in contact with the active tip of
the probe [9].

Sample temperature control was provided by
circulating water through the jacket surrounding the
sample cup from a Haake B3 Constant Temperature
Circulator with a digital control module. Sample
cup temperature was monitored with a No. 36 B & S
gage duplex nylon-insulated copper–constantan
thermocouple and a Digi-Sense JTEK Thermocou-
ple Thermometer. The thermocouple was inserted
into the 0.9-mm hole in the 1.64-mm thick sidewall
of the sample cup.

3.3. Sample preparation and physical measurements

Samples to fit snugly in the 18.95-mm diameter
sample cup for efficient heat transfer were obtained
from a slice of the fruit or vegetable with stainless
steel cork-borer-type sample cutters fabricated for
the purpose.

Tissue sample densities were obtained by weigh-
ing the sample on an analytical balance, measuring
the diameter and length of the sample with a dial
caliper, calculating the volume, and then dividing
the sample weight by this volume to obtain the
density. Moisture contents of fruit and vegetable
tissue samples were obtained by drying them in
disposable aluminum weighing dishes for 16 h at
100 1C in a forced-air oven. Upon removal from the
oven, the weighing dishes and samples were cooled
in a desiccator equipped with anhydrous calcium
sulfate (Drierite) before reweighing to determine
sample moisture loss. Moisture contents were
calculated for reporting on a wet weight basis.

Percentage of total soluble solids, mainly sugars
in fruits, was determined by expressing juice from
samples and taking measurements with a Bausch
and Lomb Abbe 3L refractometer. Samples for
moisture and refractometer tests were generally
taken from the same slice as the sample for
permittivity measurement or from adjacent tissue.
For grapes, which were only large enough for the
sample required for permittivity measurements,
moisture and refractometer tests were run on the
ends cut from the grape to provide two parallel
surfaces and on additional grapes from the same
bunch.
3.4. Measurement procedures

The HP 4291A Analyzer was permitted to warm
up for at least 1 h for stabilization. The computer
program was then initiated which performed the
instrument setup. The analyzer was calibrated by
connecting an open- and short-circuit termination
and a matched load in sequence to the 7-mm
precision connector of the HP 4291A High Im-
pedance Test Head used with the analyzer. Next, the
cable for the HP 85070A Dielectric Probe was
connected to the Test Head and given several
minutes to stabilize from slight flexure. The probe
was already clamped in position on the probe stand
and the cable had already been supported in nearly
the same position to avoid any temporal distur-
bances due to changes in cable position or flexure.
Then, the probe calibration was completed by using
the air, short-circuit, and glass-distilled water
references, and measurements were made on air
and distilled water to verify that proper permittivity
values were being obtained. The 25 1C distilled
water reference was raised to the probe in a 10-ml
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glass beaker so that visual inspection could insure
there were no air bubbles trapped in the measure-
ment region at the tip of the probe.

Generally, slices about 1.5 cm thick were cut from
the fruit or vegetable with a sharp knife, cutting the
surfaces as nearly parallel as possible. These cuts
were made in planes perpendicular to the axis of
symmetry or longitudinal axis of the fruit or
vegetable, taking the slice from the central region.
The slice was then immediately transferred to a drill
press for cutting the cylindrical sample. The sample
was removed from the cutter and weighed on an
analytical balance. Its dimensions were then mea-
sured with a dial caliper, and it was inserted into the
sample cup in preparation for the permittivity
measurements. For firm tightly fitting samples, a
small vertical groove was cut in the edge of the
sample to permit the escape of air as the sample was
inserted into the sample cup. Then the sample cup
and water jacket assembly (Fig. 1) was raised in
position on the probe stand to bring the probe
flange into the sample cup and the sample into
contact with the tip of the probe. A permittivity
measurement was triggered to insure that there was
good contact between the probe and the sample.

After a few minutes to give the sample time to
come into temperature equilibrium with the circu-
lating water at 5 1C, the first permittivity measure-
ment to be recorded was triggered, and the setting
for the constant temperature circulator was raised
to 15 1C. The water temperature in the circulator
had been lowered to 5 1C by the addition of crushed
ice. After the initial measurement for record at 5 1C,
permittivity measurements were taken at 10 1C
intervals up to 95 1C. The circulator made this
Table 2

Characteristics of fruit and vegetable tissue samples

Fruit or vegetable Cultivar or other

description

Apple, Malus domestica Borkh. ‘Red Delicious’

Avocado, Persea americana Miller var.

Americana

Banana, Musa x paradisiacal L. var.

Paradisiaca

‘Cavendish’

Cantaloupe, Cucumis melo L. Muskmelon

Carrot, Daucus carota subsp. sativus (Hoffm.)

Arcang.

Cucumber, Cucumis sativus L.

Grape, Vitis amurensis Rupr. ‘Thompson Seedless’

Orange, Citrus aurantium subsp. Bergamia Navel

Potato, Solanum tuberosum L. ‘Russett Burbank’
10 1C adjustment in the water temperature in about
2min, and a subsequent period of 3min was
provided for the sample to equilibrate to the new
temperature. Repeated permittivity measurements
with no change in resulting values verified that the
3-min interval was sufficient for the temperature
equilibration of the sample for the permittivity
measurements. Thus, permittivity measurements
and set-point adjustments were triggered at 5-min
intervals, and the entire measurement sequence was
completed in about 50min. At the termination of
each measurement sequence, crushed ice was
introduced into the controlled temperature circula-
tor to lower the sample temperature, and the sample
was removed from the sample cup and sealed in a
small jar for subsequent oven moisture tests along
with samples from the fresh fruit or vegetable.
Permittivity measurements on air and water were
then taken to verify the stability of the probe
calibration during the measurement sequence.

4. Results of measurements

The non-electrical characteristics of the fresh fruit
and vegetable samples are presented in Table 2 for
descriptive purposes. There are differences among
the various fruits and vegetables in the character-
istics shown. Cucumber tissue has the highest
moisture content among those listed, and banana
tissue has the lowest moisture content. Differences
are also shown for tissue density, with potato
having the highest density and apple having the
lowest. For total soluble solids, which are mostly
sugars in fruits, banana is the highest and cucumber
is the lowest. All of these characteristics influence
Moisture

content (%)

Tissue density

(g/cm3)

Total soluble

solids (%)

85 0.81 13.4

82 0.99 8.1

74 0.98 22.3

87 0.97 13.0

87 1.00 8.6

97 0.94 2.4

83 1.01 17.3

89 1.04 13.1

77 1.08 6.4
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the dielectric properties, with moisture content and
density expected to have the more important roles.

The variation of the dielectric properties of
samples from two of these nine fruits and vegetables
with frequency and temperature is shown, for
example, for apple and avocado in Figs. 2 and 3.
Both the real and imaginary parts of the complex
relative permittivity, dielectric constant and loss
factor, show monotonic decreases in value as
frequency increases. Trends with temperature are
not so consistent. For example, at the lowest
frequency, the dielectric constant and the loss factor
both increased monotonically with temperature for
avocado (Fig. 3), cantaloupe, cucumber, and
orange. For the other five, apple (Fig. 2), banana,
carrot, grape, and potato, the dielectric constant
increased as the temperature increased from 5 to
65 or 75 1C and then decreased as temperature
continued to increase.

The very high values for e0 at the lower end of the
frequency range are no doubt attributable to the
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contribution of ionic conduction, while the behavior
of e0 at the higher end of the frequency range is
characteristic of dipolar relaxation. It is obvious in
Fig. 3 that, at some frequency in the range between
10 and 100MHz, the temperature dependence of e0

disappears, and the ionic conduction becomes the
dominant mechanism influencing the value of e0

below that frequency. This is particularly clear in
Fig. 3 for avocado and was also true for banana,
cantaloupe, carrot, cucumber, and orange. It is less
clear for apple tissue in Fig. 2 and for grape and
potato, where the reversal of the temperature
coefficient sign takes place in the 65–75 1C range.
This change in the sign of the temperature
coefficient of e0 for apple, grape, potato, and banana
is probably associated with changes caused by the
breakdown of cell membranes as a result of
exposure to the high temperatures even for rela-
tively short time periods. For those tissues in
which the reversal of the temperature coefficient
for the dielectric constant did not occur, there was a
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reduction in the temperature coefficient at tempera-
tures above about 65 1C, which can most likely be
explained by the same phenomenon.

5. A general description of the recognition procedure

Expression (24) can serve as a general formula for
the fitting of the measured complex permittivity
data in the frequency domain. Let us suppose that
another expression can be presented in the form of
linear combinations of two complex functions, i.e.

eðjoÞ ¼ e1 þ
D1

1þ R1ðjoÞ
þ

D2

1þ R2ðjoÞ
. (25)

Simple algebraic manipulations show that the last
expression can be presented again in the form (24)

eðjoÞ ¼ e1 þ
D1 þ D2

1þ R12ðjoÞ
, (26)

where

R12ðjoÞ ¼
w1R1ðjoÞ þ w2R2ðjoÞ þ R1ðjoÞR2ðjoÞ

1þ w1R2ðjoÞ þ w2R1ðjoÞ
,

wk ¼
Dk

D1 þ D2
; ðk ¼ 1; 2Þ. ð27Þ

The basic problem in the concrete application
of expression (24) is to develop some recognition
procedure which allows one to differentiate the
true form of the function RðjoÞ and the number of
power-law exponents in it. At present, a general
solution of this problem is absent. Solutions of some
partial problems are shown in [18]. Here we note
two points that are important for treatment of raw
DS data.

5.1. The recognition of the low-frequency (LF)

branch

It is known that, at low frequencies in some
materials displaying hopping/ionic conductivity
[10], a low-frequency dispersion (LFD) phenomen-
on takes place. It can be detected as an increasing
branch of real and complex parts of the permittivity
in the LF region. In accordance with the classifica-
tion given by Jonscher [10], the LFD is expressed in
the form

eðjoÞ ¼ e1 þ
1

ðjotÞy
. (28)

So, if the LFD phenomenon exists in some
conducting material with hopping conductivity it
can be detected by application of the ratio
presentation (RP) format [18]. Expression (28) in
RP format accepts the form

�
Re½eðjoÞ	
Im½eðjoÞ	

� �
¼ Aþ Boy,

A ¼ cot
py
2

� �
; B ¼

e1ty

sinðpy=2Þ
. ð29Þ

This behavior can be easily differentiated from
the complex permittivity representing the Cole–Cole
function for R ¼ (jot)n. In the RP format the
Cole–Cole function accepts the form

�
Re½eðjoÞ	
Im½eðjoÞ	

� �
¼ Aþ Bo�n þ Con,

A ¼
es þ e1
es � e1

� �
cot

pn
2

� �
,

B ¼
es

ðes � e1Þtn sinðpn=2Þ
,

C ¼
e1tn

ðes � e1Þ sinðpn=2Þ
. ð30Þ

The last function has a specific minimum
shifted presumably to the high-frequency (HF)
region (es/eN41) with respect to the maximum of
the Cole–Cole function

omin ¼
es
e1

� �1=2n
1

t
�

es
e1

� �1=2n

oCC. (31)

Here oCC determines the maximum value of
the Cole–Cole function. It helps to differentiate the
LFD behavior from the Cole–Cole function. The
specific features evoked by linear combination of
the LFD and Cole–Cole functions are shown in [18].
So, the RP format is very informative in recognition
of a possible LFD phenomenon in measured DS
data.

5.2. The self-consistent calculation of the limiting

values es and eN

Let us come back again to expression (24). For
further purposes, it is convenient to present this
expression in the form

eðjo; e1; esÞ ¼ e1 þ
es � e1

1þ RðjoÞ
. (32)

To find the initial values, one can use the
presentation of the complex permittivity in normal
and modulus (1/e(jo)) formats, respectively. Here
we want to note one advantage of the presentation
of DS data in the modulus format that is very
informative in recognition of different dielectric
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spectra. Based on expression (24), after simple
algebraic manipulations one can obtain the follow-
ing expression:

1

eðjoÞ
¼

1

e1
þ

1

es
�

1

e1

	 

1

1þ lRðjoÞ
; l ¼

e1
es

.

(33)

Since, lo1 and R(jo) represents a linear combi-
nation of the power-law functions, the dielectric
spectrum analyzed is artificially shifted from the LF
to the HF region. So, the limiting values calculated
from the modulus format will be different in
comparison to the calculated limiting values ob-
tained from the normal presentation (24). If the
dielectric spectrum is located in the given frequency
window

ominpopomax, (34)

then the initial values of eð0Þs and eð0Þ1 can be found
from the expressions

eð0Þs ¼ max Re eðjominÞ; Re
1

eðjominÞ

� ��1 !
,

eð0Þ1 ¼ min Re eðjomaxÞ; Re
1

eðjomaxÞ

� ��1 !
. ð35Þ

One can also stress here a useful property of the
complex function RðjoÞ, which helps to find the
corrected values of es and eN. It is easy to see from
(24) that for the given range of frequencies (34) this
function should have a monotonic behavior, i.e.

RðjoÞ ! 1; at o!1,

RðjoÞ ! 0; at o! 0. ð36Þ

Since the limiting values of es and eN cannot be
calculated precisely in any finite frequency window,
one can suggest an iteration procedure for their self-
consistent calculation. For this purpose one can
present expression (32) in two equivalent forms

1þ R jo; eðnÞs ; e
ðnÞ
1

� �
¼

eðn�1Þs � eðn�1Þ1

e jo; eðn�1Þs ; eðn�1Þ1

� �
� eðn�1Þ1

,

1þ R�1 jo; eðnÞs ; e
ðnÞ
1

� �
¼

eðn�1Þs � eðn�1Þ1

eðn�1Þs � e jo; eðn�1Þs ; eðn�1Þ1

� � ð37Þ

and consider these expressions as the self-consistent
iteration procedure (SCIP) for the calculation of the
limiting values es and eN satisfying conditions of
(36) and with initial values taken from expressions
(35). Numerical verifications show that this SCIP
is quickly convergent and helps to calculate the
limiting values es and eN without concrete knowl-
edge of the complex function RðjoÞ. The essential
advantage of the SCIP is that it helps to extract the
function RðjoÞ with acceptable accuracy and to
calculate the rest of the fitting parameters related to
this function only.

6. Treatment of the available complex permittivity

data

We want to demonstrate the details of the new
approach choosing the set of DS data for apple tissue
(chosen from the whole set of data as the first in
alphabetic order). DS data for the other fresh fruits
and vegetables were treated in the same manner. The
treatment process can be divided into four parts. The
first part will be related to the analysis of the LF
branch (region of increasing permittivity at low
frequencies) that is always present in the data
analyzed (see, for example Figs. 2 and 3).

6.1. Recognition of the LFD process

If initial data are presented in the RP format, one
can notice that the tendency for increasing permit-
tivity of the left-hand side branch disappears. See
Fig. 4, where two files representing the temperature
limits for available data (5 and 95 1C) are presented.
If we suppose that in the LF region we have
asymptotic behavior similar to expression (28), one
can notice that the fitting procedure applied gives
the exponent y41 leading to the negative value of
hopping conductivity (cos(py/2))o0 that contra-
dicts the physical meaning of this value. So, one
can conclude that we have at least some constant
conductivity phenomenon (y ¼ 1) or, probably, a
hidden conductance part expressed in the form of
the Cole–Cole expression (when |(jot)n|)b1, which,
however, is not detectable in the admissible fre-
quency range. This means that after presentation of
data in RP format a possible complex permittivity
function can be presented in the form

eðjoÞ ¼ e1 þ
s0
jo
þ

es � e1
1þ RðjoÞ

, (38)

where the complex function RðjoÞ in (38) remains
unknown. So, based on the initial hypothesis (38),
one can subtract initially the conductance part
(s0/jo) and then apply the SCIP for calculation of
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the limiting values es and eN. After subtraction of the
conductance part (the fitting value s0 is calculated
from the condition that 0oIm[e(omin)]o0.2), the
imaginary part of the complex permittivity reveals
other processes taking place in the HF range. Fig. 5
demonstrates the results of the subtraction procedure
taken again for the limiting temperatures 5 and
95 1C, respectively.

6.2. Application of the self-consistent iteration

procedure (SCIP)

Calculating the initial values of eð0Þs and eð0Þ1 from
expressions (35), one can calculate the function
RðjoÞ and verify the convergence of the whole
procedure. These steps are illustrated by Figs. 6
and 7. As shown in Fig. 6, the complex function
RðjoÞ has a tendency to satisfy the requirements
of (36). The results of the application of the SCIP
(Fig. 7) shows the quality of the fitting of the
functions Re[e(o)] and Im[e(o)] (after subtraction)
obtained with the help of calculated parameters es
and eN.

6.3. Application of the separation procedure

For recognition of the number of power-law
exponents, we are applying the separation procedure.
Before its application, it is necessary to calculate the
complex function RðjoÞ from expression (32)

RðjoÞ ¼
es � eðjoÞ
eðjoÞ � e1

, (39a)
or from the expression representing the inverse
function

R�1ðjoÞ ¼
eðjoÞ � e1
es � eðjoÞ

. (39b)

This procedure involves the multiplication of
the right-hand sides of equations (39) by the factor
os, where s (defined as the separation exponent)
has a value between the power-law exponents n1
and n2 (min(|n1|, |n2|)osomax(|n1|, |n2|)) with
the opposite sign. This simple procedure helps to
differentiate between the functions RðjoÞ defined
by expression (24). This procedure applied to the
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function RðjoÞ ¼ ðjot1Þ
n1 þ ðjot2Þ

n2 with negative
separation factor (so0) should give a [-shaped
curve (the amplitudes tn11 ; t

n2
2 have the same sign).

The same procedure applied to the function RðjoÞ ¼
½ðjot1Þ

�n1 þ ðjot2Þ
�n2 	�1 instead of the desired mini-

mum leads to a ‘hump’ (\-shaped curve). The
separation procedure with positive factor (s40)
applied to the function R�1ðjoÞ ¼ ðjot1Þ

�n1 þ

ðjot2Þ
�n2 leads to the [-shaped curve and gives the

‘hump’ for the function R�1ðjoÞ ¼ ½ðjot1Þ
n1þ

ðjot2Þ
n2 	�1. This simple procedure helps to differ-

entiate between collective motions connected in
parallel from motions connected in series. For the
concrete DS data, the application of this procedure
leads to the conclusion that for all sets of the
available data analyzed we have only two collective
motions connected in series. In other words, the
recognized fitting function has the form

RðjoÞ ¼ ðjot1Þ
�n1 þ ðjot2Þ

�n2½ 	
�1. (40)
We do not give the corresponding figures to save
more space for the final results.

6.4. The application of the eigen-coordinates method

For more accurate calculation of the fitting
parameters in expression (40) one can use the
presentation which has been developed by one of
the authors (RRN). This presentation was defined
as the eigen-coordinates (ECs) method [25–28], in
which the combination containing initially non-
linear fitting parameters is transformed into a set of
straight lines. This transformation follows from
the corresponding differential equation, in which
the desired fitting parameters form a linear combi-
nation. Here we want to stress two important
advantages related to the application of the ECs
method:
(a)
 The ECs method does not require the initial
estimate of the fitting parameters and thereby
solves the problem of the global minimum.
(b)
 The ECs method uses the well-developed linear
least-squares method (LLSM), which is rather
stable with respect to the influence of the initial
measured/experimental errors.
It is instructive to write the basic linear relation-
ship (defined as the corresponding ECs) for the
function

yðxÞ ¼ A1 expðl1xÞ þ A2 expðl2xÞ. (41)

This function is completely equivalent to the
function 1/R(jo) obtained from expression (40). The
corresponding linear relationship can be written in
the following form:

Y ðxÞ ¼ C1X 1ðxÞ þ C2X 2ðxÞ þ C3X 3ðxÞ, (42)

where

Y ðxÞ ¼ yðxÞ � h� � �i, (43a)

X 1ðxÞ ¼

Z x

x0

yðuÞdu� h� � �i; C1 ¼ �ðl1 þ l2Þ,

(43b)

X 2ðxÞ ¼

Z x

x0

ðx� uÞyðuÞdu� h� � �i; C2 ¼ �l1l2,

(43c)

X 3ðxÞ ¼ x� h� � �i. (43d)
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The symbol /?S means that the corresponding
arithmetic mean calculated for the function Xk(x)
(k ¼ 1,2,3) should be subtracted from each Xk(x) in
obtaining the final expression. The constant C3 in
(42) contains the unknown value of the first
derivative at the initial point and is not essential
for calculation of the desired roots {l1 and l2}. The
unknown constants A1 and A2 are also found using
the LLSM from (41). The results of the fitting
function 1/R(jo) are shown in Figs. 8a and b for the
real and imaginary parts, respectively.

So, these four steps are sufficient for realization of
the whole fitting procedure in order to obtain the
complete set of fitting parameters (t1, n1, t2, n2, es,
eN, and s0). These plots are shown in Figs. 9–15,
respectively. Plots are shown for each of the
nine fruits and vegetables in order to compare them
with each other based on the corresponding fitting
parameter.
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7. Results and discussions

Finishing this analysis, in conclusion one can
make the following statements:
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the third HF-process. If this parameter is rather high, then the

uence of the HF-process is becoming important; in the

osite case, when eN(T) is low, the influence of the third

cess is not important.
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Fig. 11. The temperature dependence of the static conductivity

parameter versus temperature. These plots reveal the common

tendency, viz., the increasing of s0(T) with increasing tempera-

ture.

0 20 40 60 80 100

-5.3
-5.2
-5.1
-5.0
-4.9
-4.8
-4.7
-4.6
-4.5
-4.4
-4.3
-4.2
-4.1
-4.0
-3.9
-3.8
-3.7
-3.6
-3.5

 Nu11
 Nu12
 Nu13
 Nu14
 Nu15
 Nu16
 Nu17
 Nu18
 Nu19

P
ow

er
-la

w
 e

xp
on

en
t-

ν 1

Temperature(T°C)

Fig. 12. Temperature dependence of the power-law exponent

n1(T) for all sets of the plant tissues taken in alphabetical order.
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Fig. 13. Temperature dependence of the mean relaxation time t1.
The ECs method provides the fitting values without initial

estimates, and finally we obtained rather long relaxation times

corresponding to the global minimum. These long relaxation

times obtained are needed in further interpretations. The longest

times belong to grape (7) tissue, and the shortest times represent

carrot (5) tissue. One can notice that these data are correlated

with those of Fig. 12.
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Fig. 14. The family of the power-law exponents related to n2(T).
The values of all sets do not exceed unity. The quasi-monotonic

behavior is disturbed again at temperatures exceeding 65 1C.
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Fig. 15. The last family of plots demonstrates the behavior of the

mean relaxation time t2(T). Because of strong deviations of these

fitting parameters, this parameter is given in the normalized

logarithmic form as L2 ¼ ln(t2(T)� 10�7).
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expressed by the generalized memory function
(23), it becomes possible to analyze different
complex systems with the help of the complex
permittivity function. It considerably increases
the possibilities for potential usage of dielectric
spectroscopy in analysis of systems having
various complexities.
2.
 Applying this new ideology (reduction of a
set of micromotions to averaged collective
motion) to our concrete set of plant tissues one
can notice that the identified fitting function
remains common (38) for all measured samples
of nine fresh fruits and vegetables. From this
analysis, one can conclude that polar water
contained in plant cells is retained as the main
factor, completely ‘specifying’ their ‘‘electric’’
behavior.
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3.
 After elimination of a large contribution of the
conductive part caused by ion motion, one can
notice at least two other processes (Fig. 5) that
were completely hidden under the ionic conduc-
tance part. Measurements in the HF-region
(especially at low temperatures) are implied to
investigate these hidden processes in detail. One
can notice that at higher temperatures the
extreme HF process is disappearing.
4.
 Analyzing the final Figs. 9, 11, 12–15, one can
notice that behavior for some fruits and vege-
tables becomes non-monotonic for temperatures
exceeding 65 1C. Probably, this fact can be
associated with the destruction of cell membranes
by high temperatures. If this destruction takes
place, the conductivity has a tendency to be
increased, and other fitting parameters are
decreased. This finding can be important for
practical applications. The detection of instabil-
ity of cell membranes with respect to temperature
by the methods of dielectric spectroscopy can
serve as a stimulus to investigate membrane
instability due to other factors, including dete-
rioration in quality or the influence of agricultur-
al pests, etc.
5.
 Examination of fitting parameter values (Figs. 9–15)
with respect to the non-electrical fruit and vegetable
tissue characteristics listed in Table 2 did not reveal
any apparent strong correlations. However, the
power-law exponent n1 (Fig. 12) showed some
correlation with total soluble solids, indicative of
sweetness, in that the three samples with highest
sugar content (banana, grape, and apple) generally
had higher values of n1 than all the other tissues,
and those with the lower sugar content (cucumber,
avocado and carrot) had lower values of n1.
6.
 This analysis can serve as an additional stimulus
for investigation of qualitative factors which
cannot be expressed quantitatively. Indeed, the
complete fitting of the measured complex per-
mittivity including its real and imaginary parts
gives a unique possibility for finding an optimal
set of these fitting parameters for constructing
so-called calibration curves when some qualita-
tive factor can be expressed in terms of these
parameters. The simplification achieved in the
process of the identified collective motions
that can then be identified with the help of
specially developed fitting procedures makes this
problem achievable for numerous practical ap-
plications.
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